Baseline Assessment – Stream Attributes # Reach S-EF41 (Pipeline ROW) Intermittent Spread E Nicholas County, West Virginia | Data | Included | |--|---------------------------------------| | Photos | ✓ | | SWVM Form | ✓ | | FCI Calculator and HGM Form | N/A – Intermittent stream (slope <4%) | | RBP Physical Characteristics Form | ✓ | | Water Quality Data | N/A – Low flow | | RBP Habitat Form* | ✓ | | RBP Benthic Form | ✓ | | Benthic Identification Sheet | N/A – Low flow | | Wolman Pebble Count | ✓ | | Reference Reach Software Pebble Count Data | ✓ | | Longitudinal Profile and Cross Sections | ✓ | ^{*}Modified RBP - Low flow #### Spread E Stream S-EF41 (Pipeline ROW) Nicholas County Location, Orientation, Photographer Initials: Downstream Edge of Right of Way, Upstream View, ABK/WP Photo Type: DS Edge ROW, DS View Location, Orientation, Photographer Initials: Downstream Edge of ROW, Downstream View, ABK/WP #### Spread E Stream S-EF41 (Pipeline ROW) Nicholas County Photo Type: C ROW, US View Location, Orientation, Photographer Initials: Center Right of Way, Upstream View, ABK/WP Location, Orientation, Photographer Initials: Center of Right of Way, Downstream View, ABK/WP #### Spread E Stream S-EF41 (Pipeline ROW) Nicholas County Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Upstream View, ABK/WP Photo Type: US, DS View Location, Orientation, Photographer Initials: Upstream Edge of Right of Way, Downstream View, ABK/WP "Q:\Charleston\2021 Projects\21-0244- MVP- STREAM AND WETLAND CONDITIONS ASSESSMENT AND SURVEY PLAN\002 - Pre-Crossing Monitoring\Spread E\S-EF41" #### West Virginia Stream and Wetland Valuation Metric (SWVM) Version 2.1, September 2017 | USACE FILE NO./ Project Name: | | N | Mountain Valle | / Pipeline | | COORDINATES: | Lat. | 38.107549 | Lon. | -80.72628 | 84 | WEATHER: | Clear/Sunny 75 °F | | DATE: | 0.40 | 0 (0) | |---|-----------------------|------------------|----------------|--|-------------------------|----------------|------|--|-------------------------------|---------------------|------|--|-------------------------------|---|-----------------------------|---------------------|------------------| | (v2.1, Sept 2015) | | | | | (in De | cimal Degrees) | | | | | | | | | | 8/2 | 3/21 | | IMPACT STREAM/SITE ID | AND SITE DESC | CRIPTION: | | S-EF41 U | NT to Hominy Cre | ek | | MITIGATION STREAM | M CLASS./SITE ID A | ND SITE DESCRIPTION | ION: | | | С | omments: | | | | (watershed size {acreage}, | unaltered or impairm | ents) | | | | | | (watershed | I size {acreage}, unaltered | or impairments) | STREAM IMPACT LENGTH: | 82 | FORM | | | | OORDINATES: | Lat. | | Lon. | | | PRECIPITATION PAST 48 HRS: | | Mitig | ation Length: | | | | | | MITIGAT | ION: | RESTORATION (Levels I-III) | (in De | cimal Degrees) | | | | | | | | | | | | | Column No. 1- Impact Existing | Condition (Dobi | i t \ | | Column No. 2- Mitigation Existi | ng Condition Base | olino (Crodit) | | | itigation Projected at | Five Years | | Column No. 4- Mitigation Proje | | Column | No. 5- Mitigation Proje | acted at Maturit | v (Crodit) | | Column No. 1- Impact Existing | Condition (Debi | it) | | Column No. 2- Miligation Exist | ng Condition - Basi | eline (Credit) | | Post | Completion (Credit) | | | Post Completion (C | redit) | Column | No. 5- Miligation Froje | ecteu at maturit | y (Credit) | | Stream Classification: | Intermi | ittent | Stre | am Classification: | | | | Stream Classification: | | 0 | | Stream Classification: | 0 | Stream Classific | ation: | | 0 | | Percent Stream Channel Slo | ppe | 3.7 | | Percent Stream Channe | I Slope | | | Percent Stream 0 | Channel Slope | 0 | | Percent Stream Channel Slo | ре 0 | Per | cent Stream Channel | Slope | 0 | | HGM Score (attach da | ata forms): | | | HGM Score (att | ach data forms): | | | HGM Sco | ore (attach data forn | ıs): | | HGM Score (attach da | ta forms): | | HGM Score (attach | data forms): | | | | - | Average | | | | Average | | | | Averege | | | Average | | | | Average | | Hydrology | | Average | Hvd | rology | | Average | | Hydrology | | Average | | Hydrology | Average | Hydrology | | | Average | | Biogeochemical Cycling | | 0 | | jeochemical Cycling | | 0 | | Biogeochemical Cycling | | 0 | | Biogeochemical Cycling | 0 | Biogeochemical | Cycling | | 0 | | Habitat PART I - Physical, Chemical and | Pielegiaal Indiaa | to ro | Hab | tat PART I - Physical, Chemic | al and Biological In | dicatoro | | Habitat | Chemical and Biologic | al Indicators | | Habitat PART I - Physical, Chemical and E | Piological Indicators | Habitat | - Physical, Chemical a | nd Dialogical I | diagtora | | FART 1-Filysical, Cilentical and | Biological mulca | itors | | PART 1- Physical, Chemic | ai and Biological in | uicators | | FART 1-Filysical, C | Shemical and Biologic | ai iliuicators | | FACT 1 - Filysical, Chemical and E | siological illulcators | PARTI | - Filysical, Chemical a | na Biologicai ii | luicators | | | Points Scale Range | Site Score | | | Points Scale Range | Site Score | | | Points Scale | Range Site Score | | | Points Scale Range Site Score | | | Points Scale | Range Site Score | | PHYSICAL INDICATOR (Applies to all streams | classifications) | | PHY | SICAL INDICATOR (Applies to all str | eams classifications) | | | PHYSICAL INDICATOR (Applies | to all streams classification | ns) | | PHYSICAL INDICATOR (Applies to all streams | classifications) | PHYSICAL INDIC | ATOR (Applies to all stream | ams classifications |) | | USEPA RBP (High Gradient Data Sheet) | | | | PA RBP (Low Gradient Data Shee | | | | USEPA RBP (High Gradient Da | | | | USEPA RBP (High Gradient Data Sheet) | | | h Gradient Data Sheet | | | | Epifaunal Substrate/Available Cover Embeddedness | 0-20
0-20 | 13 | | oifaunal Substrate/Available Cover
ool Substrate Characterization | 0-20
0-20 | | | Epifaunal Substrate/Available 0 Embeddedness | Cover 0-20
0-20 | | | Epifaunal Substrate/Available Cover Embeddedness | 0-20
0-20 | Epifaunal Subsi Embeddedness | rate/Available Cover | 0-20
0-20 | | | 3. Velocity/ Depth Regime | 0-20 | 0 | | ool Variability | 0-20 | | | Velocity/ Depth Regime | 0-20 | | | Velocity/ Depth Regime | 0-20 | 3. Velocity/ Depth | | 0-20 | | | 4. Sediment Deposition | 0-20 | 3 | | ediment Deposition | 0-20 | | | 4. Sediment Deposition | 0-20 | | | 4. Sediment Deposition | 0-20 | 4. Sediment Depo | | 0-20 | | | 5. Channel Flow Status | 0-20 | 0 | | hannel Flow Status | 0-20 | | | 5. Channel Flow Status | 0-20 | 0.4 | | 5. Channel Flow Status | 0-20 | 5. Channel Flow S | | 0-20 | 0.4 | | 6. Channel Alteration | 0-20 0-1 | 16 | 6. C | hannel Alteration | 0-20 | | | 6. Channel Alteration | 0-20 | 0-1 | | 6. Channel Alteration | 0-20 | Channel Alterat | ion | 0-20 | 0-1 | | 7. Frequency of Riffles (or bends) | 0-20 | 0 | 7. C | hannel Sinuosity | 0-20 | | | 7. Frequency of Riffles (or bends |) 0-20 | | | 7. Frequency of Riffles (or bends) | 0-20 | 7. Frequency of R | iffles (or bends) | 0-20 | | | 8. Bank Stability (LB & RB) | 0-20 | 18 | 8. B | ank Stability (LB & RB) | 0-20 | | | 8. Bank Stability (LB & RB) | 0-20 | | | 8. Bank Stability (LB & RB) | 0-20 | Bank Stability (I | .B & RB) | 0-20 | | | 9. Vegetative Protection (LB & RB) | 0-20 | 18 | | egetative Protection (LB & RB) | 0-20 | | | Vegetative Protection (LB & RI | | | | Vegetative Protection (LB & RB) | 0-20 | | ection (LB & RB) | 0-20 | | | 10. Riparian Vegetative Zone Width (LB & RB) | 0-20 | 6 | | Riparian Vegetative Zone Width (LB & R | | | | 10. Riparian Vegetative Zone Width | | | | 10. Riparian Vegetative Zone Width (LB & RB) | 0-20 | | tive Zone Width (LB & RB) | | | | Total RBP Score
Sub-Total | Marginal | 78
0.39 | | I RBP Score | Poor | 0 | | Total RBP Score | Pod | or 0 | | Total RBP Score
Sub-Total | Poor 0 | Total RBP Score
Sub-Total | | Poor | 0 | | Sub-Total CHEMICAL INDICATOR (Applies to Intermitten | nt and Perennial Stre | | | Total MICAL INDICATOR (Applies to Intern | nittent and Perennial S | treams) | | Sub-Total CHEMICAL INDICATOR (Applies | to Intermittent and Perer | nial Streams) | | CHEMICAL INDICATOR (Applies to Intermittent | t and Perennial Streams) | | ATOR (Applies to Intermi | ittent and Perennia | ıl Streams) | | WVDEP Water Quality Indicators (General) | | | M/// | DEP Water Quality Indicators (Gen | oral) | | | WVDEP Water Quality Indicator | re (General) | | | WVDEP Water Quality Indicators (General) | | W/DER Water Or | ality Indicators (Gene | ral\ | | | Specific Conductivity | | | | cific Conductivity | erar) | | | Specific Conductivity | is (General) | | | Specific Conductivity | | Specific Conduc | | iai) | | | | | | 500 | | | | | opcome conductify | 0-90 | | | oposino conadounty | | 000000000000000000000000000000000000000 | | | | | 100-199 - 85 points | 0-90 | | | | 0-90 | | | | 0-90 | | | | 0-90 | | | 0-90 | | | рН | | 03 | рН | | | (1) | | рН | | | | рН | | рН | | | | | 5.6-5.9 = 45 points | 0-80 | | | | 5-90 0-1 | | | | 5-90 | 0-1 | | | 5-90 | | | 5-90 | 0-1 | | 5.6-5.9 – 45 points | | | DO. | | | | | DO | | | | DO | | DO | | | | | | 10-30 | | <u> </u> | | 10.00 | | | B0 | 10-30 | | | 50 | 10-30 | ВС | | 10-30 | | | | 10-30 | | | | 10-30 | | | | 10-30 | | | | 10-30 | | | 10-30 | | | Sub-Total | | | Sub- | -Total | | 0 | | Sub-Total | | 0 | | Sub-Total | 0 | Sub-Total | | | 0 | | BIOLOGICAL INDICATOR (Applies to Intermitt | tent and Perennial S | Streams) | вю | LOGICAL INDICATOR (Applies to Int | ermittent and Perennia | l Streams) | | BIOLOGICAL INDICATOR (Appl | lies to Intermittent and I | Perennial Streams) | | BIOLOGICAL INDICATOR (Applies to Intermi | ttent and Perennial Streams) | BIOLOGICAL INI | DICATOR (Applies to Int | ermittent and Per | ennial Streams) | | WV Stream Condition Index (WVSCI) | | | wv | Stream Condition Index (WVSCI) | 1 1 | | | WV Stream Condition Index (W | (VSCI) | | | WV Stream Condition Index (WVSCI) | | WV Stream Cond | ition Index (WVSCI) | | | | 0 | 0-100 0-1 | | | | 0-100 0-1 | | | | 0-100 | 0-1 | | | 0-100 0-1 | | | 0-100 | 0-1 | | Sub-Total | | 0 | Sub- | ·Total | | 0 | | Sub-Total | • | 0 | | Sub-Total | 0 | Sub-Total | | | 0 | | | | | a | | | | | | | | | | | | | | - | | PART II - Index and Ui | nit Score | | | PART II - Index | and Unit Score | | | PART II | - Index and Unit Scor | e | | PART II - Index and Un | iit Score | | PART II - Index an | d Unit Score | Index | Linear Feet | Unit Score | | Index | Linear Feet | Unit Score | | Index | Linear | Feet Unit Score | • | Index | Linear Feet Unit Score | | Index | Linear Fo | eet Unit Score | | 0.595 | 82 | 48.79 | | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 0 | | 0 | 0 | 0 | # PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT) | STREAM NAME U | JNT Hominy Creek | LOCATION S-EF41 | | |-------------------------|---|--|---| | STATION # | RIVERMILE | STREAM CLASS Intermit | ttent | | LAT 38.107549 | LONG -80.726284 | COUNTY Nicholas | | | STORET# | | AGENCY Potesta | | | INVESTIGATORS | AK/AG/EW/WP | • | | | FORM COMPLETE | AG | DATE 8-23-2021
TIME 11:40 AM | REASON FOR SURVEY Preliminary Assessment | | WEATHER
CONDITIONS | rai
show | rm (heavy rain) in (steady rain) vers (intermittent) %cloud cover clear/sunny | Has there been a heavy rain in the last 7 days? ✓ Yes No Air Temperature 75 F C Other_ | | SITE LOCATION/ | MAP Draw a map of the s W National Pipeline POW | we will be one of the street o | pled (or attach a photograph) W W Natural Gas P. pei - e Pow | | STREAM
CHARACTERIZAT | Stream Subsystem Perennial Stream Origin Glacial Non-glacial monta Swamp and bog | Intermittent Tidal Spring-fed Mixture of origins Other | Stream Type Coldwater Warmwater Catchment Area km² | # PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK) standing water | WATERS
FEATURE | | ✓ Fores ✓ Field ✓ Agric Resid | ultural Other _
ential | rcial
al | Local Watershed NPS ☑ No evidence ☐ Son ☐ Obvious sources ☐ Local Watershed Erosi ☐ None ☑ Moderate | on Heavy | |----------------------------------|--|--|--|--|---|--| | RIPARIAI
VEGETAT
(18 meter | ΓION | Indicate
☐ Trees Domina | e the dominant type and Signature Si | record the do
nrubs
denrod, carex | minant species present
Grasses He | rbaceous | | INSTREA
FEATURE | | Estimat
Samplin
Area in
Estimat | ed Stream Width ng Reach Area km² (m²x1000) ed Stream Depth Velocity weg) m | m²
km²
5 ft _m | ly shaded □Shaded 0.5 ft m epresented by Stream Run% □No □No | | | LARGE W
DEBRIS | VOODY | LWD
Density | of LWDm | ² /km ² (LWD / 1 | reach area) | | | AQUATIC
VEGETAT | TION | Roote
Floati | e the dominant type and d emergent Re ng Algae At unt species present of the reach with aquati | ooted submerge
tached Algae | nt □Rooted floating | ☐Free floating | | | e to
t due to
d water in | Specific
Dissolve
pH | cature C Conductance ed Oxygen ty trument Used | | Water Odors Normal/None Sewage Petroleum Fishy Water Surface Oils Slick Sheen None Other Turbidity (if not measu Clear Slightly tu | Chemical
 Other
 Globs Flecks | | SEDIMEN
SUBSTRA | | Odors Norm Chen Other Oils | ical Anaerobic | Petroleum None | Looking at stones whic | □Paper fiber □Sand
Other □Sand
h are not deeply embedded,
k in color? | | INC | ORGANIC SUBS | | COMPONENTS | | ORGANIC SUBSTRATE C (does not necessarily add | | | Substrate
Type | Diamete | er | % Composition in
Sampling Reach | Substrate
Type | Characteristic | % Composition in
Sampling Area | | Bedrock
Boulder | > 256 mm (10") | | 0 | Detritus | sticks, wood, coarse plant
materials (CPOM) | - | | Cobble
Gravel | 64-256 mm (2.5
2-64 mm (0.1"-2 | 2.5") | 5 | Muck-Mud | black, very fine organic
(FPOM) | - | | Sand
Silt
Clay | 0.06-2mm (gritt)
0.004-0.06 mm
< 0.004 mm (sli | | 10
20
60 | Marl | grey, shell fragments | _ | #### HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT) | STREAM NAME UNT Hominy Creek | LOCATION S-EF41 | | | | | | | | |-------------------------------|---|--|--|--|--|--|--|--| | STATION # RIVERMILE | STREAM CLASS Intermittent | | | | | | | | | LAT 38.107549 LONG -80.726284 | COUNTY Nicholas | | | | | | | | | STORET# | AGENCY Potesta | | | | | | | | | INVESTIGATORS AK/AG/EW/WP | | | | | | | | | | FORM COMPLETED BY AG | DATE 8-23-2021 REASON FOR SURVEY Preliminary Assessment | | | | | | | | | | Habitat | | Condition | ı Category | | |--|---|---|--|---|---| | | Parameter Parameter | Optimal | Suboptimal | Marginal | Poor | | | 1. Epifaunal
Substrate/
Available Cover | Greater than 70% of
substrate favorable for
epifaunal colonization and
fish cover; mix of snags,
submerged logs, undercut
banks, cobble or other | 40-70% mix of stable
habitat; well-suited for
full colonization potential;
adequate habitat for
maintenance of
populations; presence of | 20-40% mix of stable
habitat; habitat
availability less than
desirable; substrate
frequently disturbed or
removed. | Less than 20% stable
habitat; lack of habitat is
obvious; substrate
unstable or lacking. | | | □ N/A | stable habitat and at stage
to allow full colonization
potential (i.e., logs/snags
that are <u>not</u> new fall and
<u>not</u> transient). | additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). | | | | | SCORE 4 | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | ı sampling reach | 2. Embeddedness | Gravel, cobble, and
boulder particles are 0-
25% surrounded by fine
sediment. Layering of
cobble provides diversity
of niche space. | Gravel, cobble, and
boulder particles are 25-
50% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are 50-
75% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are more
than 75% surrounded by
fine sediment. | | ted in | SCORE 13 | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | Parameters to be evaluated in sampling reach | 3. Velocity/Depth
Regime N/A | All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.) | Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes). | Only 2 of the 4 habitat
regimes present (if fast-
shallow or slow-shallow
are missing, score low). | Dominated by 1 velocity/
depth regime (usually
slow-deep). | | ıram | SCORE U | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | Pa | 4. Sediment
Deposition | Little or no enlargement
of islands or point bars
and less than 5% of the
bottom affected by
sediment deposition. | Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools. | Moderate deposition of
new gravel, sand or fine
sediment on old and new
bars; 30-50% of the
bottom affected; sediment
deposits at obstructions,
constrictions, and bends;
moderate deposition of
pools prevalent. | Heavy deposits of fine
material, increased bar
development; more than
50% of the bottom
changing frequently;
pools almost absent due to
substantial sediment
deposition. | | | SCORE 3 | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | 5. Channel Flow
Status N/A | Water reaches base of
both lower banks, and
minimal amount of
channel substrate is
exposed. | Water fills >75% of the available channel; or <25% of channel substrate is exposed. | Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. | Very little water in
channel and mostly
present as standing pools. | | | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | low flow - modified RBP #### HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK) | | Habitat | Condition Category | | | | | | | | | | | | | |---|---|--|--|--|---|--|--|--|--|--|--|--|--|--| | | Parameter | Optimal | Suboptimal | Marginal | Poor | | | | | | | | | | | • | 6. Channel
Alteration | Channelization or dredging absent or minimal; stream with normal pattern. | Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. | Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. | Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely. | | | | | | | | | | | ١ | SCORE 16 | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | | | | | | | 7. Frequency of
Riffles (or bends) | Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important. | Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15. | Occasional riffle or bend;
bottom contours provide
some habitat; distance
between riffles divided by
the width of the stream is
between 15 to 25. | Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25. | | | | | | | | | | | | SCORE 0 | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | | | | | | | 8. Bank Stability
(score each bank)
Note: determine left
or right side by
facing determine. | Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected. | Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion. | Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods. | Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars. | | | | | | | | | | | | SCORE 9 | Left Bank 10 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | | | SCORE 9 | Right Bank 10 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | | | 9. Vegetative
Protection (score
each bank) | More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally. | 70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining. | 50-70% of the
streambank surfaces
covered by vegetation;
disruption obvious;
patches of bare soil or
closely cropped vegetation
common; less than one-
half of the potential plant
stubble height remaining. | Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height. | | | | | | | | | | | | SCORE 9 | Left Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | | | SCORE 9 | Right Bank 10 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | | | 10. Riparian
Vegetative Zone
Width (score each
bank riparian zone) | Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone. | Width of riparian zone
12-18 meters; human
activities have impacted
zone only minimally. | Width of riparian zone 6-
12 meters; human
activities have impacted
zone a great deal. | Width of riparian zone <6 meters: little or no riparian vegetation due to human activities. | | | | | | | | | | | | $\frac{3}{2}$ | Left Bank 10 9 | 8 7 6 | 5 4 🔞 | 2 1 0 | | | | | | | | | | | | SCORE 3 | Right Bank 10 9 | 8 7 6 | 5 4 🐧 | 2 1 0 | | | | | | | | | | Total Score _____ low flow - modified RBP #### BENTHIC MACROINVERTEBRATE FIELD DATA SHEET | STREAM NAME UN | ME UNT Hominy Creek | | | | | | LOCATION S-EF41 | | | | | | | | | | | | | |--|--|---|--|-----------------------|--|--|--|--|--------------------------------------|--|---|---------------------------------------|---|---|--|----------------------------------|--------------------------------------|----------------------------|---------| | STATION # | R | IVE | RM | LE_ | | | STREAM CLASS Intermittent | | | | | | | | | | | | | | LAT 38.107549 | L | ONO | j -80. | 72628 | 4 | | COUNTY Nicholas | | | | | | | | | | | | | | STORET# | | | | | | | AGENCY Potesta | | | | | | | | | | | | | | INVESTIGATORS / | AK/AG | E/EW | /WP | | | | | | | | | 1 | .OT | NUMBER | | | | | | | FORM COMPLETED | ORM COMPLETED BY AG | | | | | | | E 8-23- | - | | | I | REAS | ON FOR SURVEY P | relimir | nary | Asse | essm | ent | | HABITAT TYPES | In | dica
C | ite th
obbl
merg | e pe | ercen
%
Macro | tage of e | ach h
ags% | abitat 1 | type pr
□V | esen
eget | t
ated
ther | Banl | ks | % | % | | | | | | SAMPLE
COLLECTION | G | ear | used | | D-fr | rame 🗌 | kick-ı | net | | | | | | | - | | | | | | COLLECTION | н | ow v | vere | the | samp | oles colle | cted? | | wadin | g | | fron | n ban | k from boa | at | | | | | | | In | dica
Cob
Sub | ite thoble_
merg | e nu | ımbe
-
//acro | er of jabs
Sna
ophytes_ | /kicks | taken
— | in each
□V | halt
eget | itat
ated
ther | type
Banl
(| ks | Sand
) | | | | | | | GENERAL
COMMENTS | u | ın | al | ole | e ' | to c | ol | lec | ct b | е | nt | h | ic | s due to | lo | W | fl | O\ | N | | QUALITATIVE I | LIST | IN | G C |)F A | Q U | ATIC I | вют | [A | | | | | | | | | | | | | QUALITATIVE I Indicate estimated Dominant Periphyton Filamentous Algae | d abı | | | | 0 = A | Absent/ | Not (| Obser
4 | | Slir | nes | | | | 0 | 1 | 2 | 3 | - | | Indicate estimated Dominant Periphyton Filamentous Algae | d abu | ınd | | | 0 = A 0 0 | 1 2
1 2 | 3
3 | Observ
4
4 | | Slir | nes | | = C | | 0 | | 2 2 | 3 3 3 | 4 | | Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated | d abu | ONS | S Ol | F Mee: | 0
0
0
0
(ACI
0 = orga | 1 2 1 2 1 2 ROBEN Absent anisms) | 3
3
3
VTHO
/Not | 4
4
4
4
OS
Obser | rved, | Slin
Ma
Fisl | nes
croin | e (1 | -3 or | rganisms), 2 = Co
, 4 = Dominant (> | 0
0
0 | 1
1
1 | 2
2
2 | 3 3 | 4 | | Periphyton Filamentous Algae Macrophytes FIELD OBSERV Indicate estimated | ATIO | ONS
und | S Ol anco | F M e: 3 | 0
0
0
0
(ACI
0 = orgs | 1 2 1 2 1 2 ROBEN Absentanisms) | 3 3 3 VTH(/Not, 3= | 4
4
4
4
OS
Obser | rved, adant (2 | Slin
Ma
Fisl | mes croin | nver | -3 or 4 | rganisms), 2 = Co 4 = Dominant (> Chironomidae | 0
0
0
0 | 1
1
1
1
m (3
rgan | 2
2
2
2-9
nism | 3
3
3 | 4 | | Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa | ATIO O | ONS
und | S Ol
ance | F M e: 3 | 0
0
0
0
(ACI
0 = org: | 1 2 1 2 1 2 ROBEN Absent anisms) | 3 3 3 WTHO //Not , 3= | 4
4
4
4
OS
Obser | rved, adant (2 | Slin Ma Fisl 1 = 1 1 | Rargorgs | e (1) | -3 or 4 4 | rganisms), 2 = Co 4 = Dominant (> Chironomidae Ephemeroptera | 0
0
0
0
mmo
50 o | 1
1
1
1
m (3
rgan | 2
2
2
2
-9
nism | 3
3
3
3
3 | 4 4 4 | | Periphyton Filamentous Algae Macrophytes FIELD OBSERV Indicate estimated Porifera Hydrozoa Platyhelminthes | ATIO | ONS
und | S Olance | 3
3
3 | 0
0
0
0
(ACI
0 = orgs | 1 2 1 2 1 2 ROBEN Absent anisms) Aniso Zygor Hemi | 3 3 3 VTH(//Not , 3= ptera otera otera | 4
4
4
4
Obser
Abund | 0
0
0 | Slin Ma Fisl 1 = 1 1 1 1 | mes croin Raraorg: | 3
3
3 | -3 or sms). | rganisms), 2 = Co 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera | 0
0
0
0
mmo
50 o | 1
1
1
1
1
1
1 | 2
2
2
2
2
2
2
2 | 3
3
3
3
3
3 | 4 4 4 4 | | Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria | ATIO
0
0
0 | ONS
und
1
1
1
1 | S Olance | F M e: 3 3 3 3 3 | 0
0
0
0
(ACI
0 = orgs | 1 2 1 2 1 2 ROBEN Absent anisms) Aniso Zygor Hemir Coleo | 3 3 3 WTHO /Not , 3= ptera otera otera otera | 4
4
4
4
OS
Obser | 0
0
0
0 | Slin Ma Fisl 1 = 1 1 1 1 1 | Rare orga | 3
3
3
3 | -3 on 4 4 4 4 4 4 | rganisms), 2 = Co 4 = Dominant (> Chironomidae Ephemeroptera | 0
0
0
0
mmo
50 o | 1
1
1
1
m (3
rgan | 2
2
2
2
-9
nism | 3
3
3
3
3 | 4 4 | | Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea | ATIO
0
0
0
0 | ONS
und
1
1
1
1
1 | 2
2
2
2
2 | 3
3
3
3
3 | 0
0
0
0
(ACI
0 = orgs | 1 2 1 2 1 2 1 2 ROBEN Absent, anisms) Aniso Zygor Hemir Coleo Lepide | 3 3 3 WTHO /Not , 3= ptera otera otera optera | 4
4
4
4
OS
Obser | 0
0
0
0
0 | Slin Ma Fisl 1 = 1 1 1 1 1 | Rarrorgs | 3
3
3
3
3 | -3 or sms). | rganisms), 2 = Co 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera | 0
0
0
0
mmo
50 o | 1
1
1
1
1
1
1 | 2
2
2
2
2
2
2
2 | 3
3
3
3
3
3 | 4 4 4 4 | | Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta | ATIO
0
0
0
0
0 | ONS
und
1
1
1
1
1
1 | 2
2
2
2
2
2
2 | 3 3 3 3 3 3 | 0
0
0
0
0
ACI
0 = orgs | 1 2 1 2 1 2 1 2 ROBEN Absent anisms) Aniso Zygop Hemii Coleo Lepide Sialid | 3 3 3 NTH(//Not , 3= | 4
4
4
4
OS
Obser
Abund | 0
0
0
0
0
0 | Slin Ma Fiss 1 = 1 1 1 1 1 1 1 | Raracorgi | 3
3
3
3
3
3 | -3 on sms). | rganisms), 2 = Co 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera | 0
0
0
0
mmo
50 o | 1
1
1
1
1
1
1 | 2
2
2
2
2
2
2
2 | 3
3
3
3
3
3 | 4 4 4 4 | | Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda | 0
0
0
0
0
0 | ONS
und
1
1
1
1
1
1 | 2
2
2
2
2
2
2
2 | 3 3 3 3 3 3 3 | 0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4 | 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | 3 3 3 3 NTHO //Not , 3= ptera ptera ptera ptera ae alida | 4
4
4
4
OS
Obser
Abund | 0
0
0
0
0
0 | Slin Ma Fiss 1 = 1 1 1 1 1 1 1 1 | Rarcorgs 2 2 2 2 2 2 2 2 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | -3 on sms). | rganisms), 2 = Co 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera | 0
0
0
0
mmo
50 o | 1
1
1
1
1
1
1 | 2
2
2
2
2
2
2
2 | 3
3
3
3
3
3 | 4 4 4 4 | | Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda | ATIC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ONS
und
1
1
1
1
1
1
1 | 2
2
2
2
2
2
2
2
2 | 3 3 3 3 3 3 3 3 | 0
0
0
0
0
0
6ACI
0 = orgs | 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | 3 3 3 3 WITHO //Not , 3= ptera ptera ptera ptera ae alida dae | 4
4
4
4
OS
Obser
Abund | 0
0
0
0
0
0 | Slin Ma Fis 1 = 1 1 1 1 1 1 1 1 1 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | -3 or ms). | rganisms), 2 = Co 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera | 0
0
0
0
mmo
50 o | 1
1
1
1
1
1
1 | 2
2
2
2
2
2
2
2 | 3
3
3
3
3
3 | 4 4 4 4 | | Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda Decapoda | ATIO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ON3 und 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2
2
2
2
2
2
2
2
2
2 | 3 3 3 3 3 3 3 3 3 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Absent/ 1 2 1 2 1 2 1 2 ROBEN Absent anisms) Aniso Zygop Hemin Coleo Lepid Sialid Coryd Tipuli Empid | 3 3 3 WTHO /Not , 3= ptera otera otera optera ae alida dae didae | 4
4
4
4
OS
Obser
Abund | 0
0
0
0
0
0
0
0 | Slin Ma Fis 1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | mes croin 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | -3 on 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | rganisms), 2 = Co 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera | 0
0
0
0
mmo
50 o | 1
1
1
1
1
1
1 | 2
2
2
2
2
2
2
2 | 3
3
3
3
3
3 | 4 4 4 4 | | Periphyton Filamentous Algae Macrophytes FIELD OBSERVA Indicate estimated Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda | ATIC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ONS
und
1
1
1
1
1
1
1 | 2
2
2
2
2
2
2
2
2 | 3 3 3 3 3 3 3 3 | 0
0
0
0
0
0
6ACI
0 = orgs | 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | 3 3 3 3 WTHO /Not , 3= ptera optera optera ae alida dae didae iidae | 4
4
4
4
OS
Obser
Abund | 0
0
0
0
0
0 | Slin Ma Fis 1 = 1 1 1 1 1 1 1 1 1 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | -3 or ms). | rganisms), 2 = Co 4 = Dominant (> Chironomidae Ephemeroptera Trichoptera | 0
0
0
0
mmo
50 o | 1
1
1
1
1
1
1 | 2
2
2
2
2
2
2
2 | 3
3
3
3
3
3 | 4 4 4 4 | | SITE ID: 9-EF41 | Spread E | | |-----------------------|----------|--| | DATE: 23 August 2021 | / 1(40 | | | COLLECTOR(S): AKI AGI | EW/WP | | | Wolman Pek | oble Count (Re | each Wide) | | | | | | | | NOTES: | |------------|----------------|------------|--------|-------|-------|-------|--------|-------|-------|--------| | 260 | 260 | 260 | 260 | 75 | 75 | 45 | 4.062 | 4.062 | 4.062 | | | 35 | 4,062 | 4.062 | 4.062 | 4.062 | 35 | 4.062 | c 1062 | 4.062 | 35 | | | 4.062 | 4.062 | 4.062 | 4.062 | 4.81 | 4.062 | 4.662 | 4.062 | 4.062 | 4.062 | | | 4.062 | 4.062 | 6.062 | 2.062 | 4.062 | 4.062 | 4.062 | 4.662 | 4.062 | 4.062 | | | 4.062 | 2.062 | 4.062 | .4.062 | 4.062 | 4.662 | 4.062 | 4.062 | 4.062 | 4.062 | | | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | <.062 | 4.062 | 4.062 | | | 4.062 | 1 1/62 | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | 4.67 | 4.062 | | | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | | | <.062 | 4.062 | 4.062 | 4.062 | 4.62 | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | | | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | 4.062 | 2.062 | 4.062 | | | Riffle Pebble Coun | | direct order than | AN LEY | | OF BUILDING | NOTES: | |--------------------|---|-------------------|--------|---|-------------|--------| - | 1 | | | | | | | | | | | P | 1 | NOTES: | |--|--|--|---|--------| Inches | PARTICLE | Millimeters | | |------------|-----------------|-------------|-------------| | | Silt / Clay | < .062 | S/C | | | Very Fine | .062125 | | | | Fine | .12525 | S | | | Medium | .2550 | SAND | | | Coarse | .50 - 1.0 | D | | .0408 | Yery Coarse | 1.0 - 2 | | | .0615 | Very Fine | 2-4 | 10 X 25 | | .1622 | Fine | 4 - 5.7 | | | .2231 | Fine | 5.7 - 8 | G | | 31 - 44 | Medium | 8 - 11,3 | G
R
A | | .4463 | Medium | 11.3 - 16 | v. | | .6389 | Coarse | 16 - 22.6 | E E | | .69 - 1.3 | Coarse | 22.6 - 32 | U | | 1.3 - 1.B | Very Coarse | 32 - 45 | 1000 | | 1.8 - 2.5 | Very Coarse | 45 - 64 | 100 | | 2.5 - 3.5 | Small | 64-90 | Hola | | 3.5 - 5.0 | Small | 90 - 128 | | | 5.0 - 7.1 | Large | 128 - 180 | 3 8 | | 7,1 - 10,1 | Large | 180 - 256 | 5.3 | | 0.1 - 14.3 | Small | 256 - 362 | 8 | | 4.3 - 20 | Smaff | 362 - 512 | ΝŬ | | 20 - 40 | Medium | 512 - 1024 | Ng. | | 40 - 80 | Large-Vry Large | 1024 - 2046 | R | | | Bedrock | | BDRK | | Bankfull Channel | • | | |--------------------|--------------------|-------| | Material | Size Range (mm) | Count | | silt/clay | 0 - 0.062 | 90 | | very fine sand | 0.062 - 0.125 | 0 | | fine sand | 0.125 - 0.25 | 0 | | medium sand | 0.25 - 0.5 | 0 | | coarse sand | 0.5 - 1 | 0 | | very coarse sand | 1 - 2 | 0 | | very fine gravel | 2 - 4 | 0 | | fine gravel | 4 - 6 | 0 | | fine gravel | 6 - 8 | 0 | | medium gravel | 8 - 11 | 0 | | medium gravel | 11 - 16 | 0 | | coarse gravel | 16 - 22 | 0 | | coarse gravel | 22 - 32 | 0 | | very coarse gravel | 32 - 45 | 4 | | very coarse gravel | 45 - 64 | 0 | | small cobble | 64 - 90 | 2 | | medium cobble | 90 - 128 | 0 | | large cobble | 128 - 180 | 0 | | very large cobble | 180 - 256 | 0 | | small boulder | 256 - 362 | 4 | | small boulder | 362 - 512 | 0 | | medium boulder | 512 - 1024 | 0 | | large boulder | 1024 - 2048 | 0 | | very large boulder | 2048 - 4096 | 0 | | tota | ll particle count: | 100 | | | | | | clay hardpan | | | | detritus/wood | | | | artificial | | - | | | total count: | 100 | | Note: | | | S-EF41 # S-EF41 BASELINE THALWEG PROFILE 0+5**0**+53.41 DISTANCE ALONG CROSS-SECTION (FT) PROFILE LEGEND <u>PROFILE</u> H: 1"=10' **EXISTING STREAM PROFILE** SCALE: V: 1"=5' INVERT ALONG THALWEG ### LEGEND STUDY AREA (EASEMENT) EXISTING SURVEY-LOCATED THALWEG EXISTING SURVEYED GROUND SHOT ELEVATION 1176.87 + #### SURVEY NOTES: - 1. THIS MAP HAS BEEN ORIENTED TO NAD 1983 UTM ZONE 17N, AND VERTICALLY TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), USING REAL TIME DGPS. FIELD LOCATIONS WERE COMPLETED ON - 2. EASEMENT LINES SHOWN ON PLAN VIEW WERE PROVIDED BY MOUNTAIN VALLEY PIPELINE. - 3. SURVEY POINTS FOR CROSS SECTIONS AND THALWEG PROFILES COLLECTED IN 2021 HAVE BEEN USED IN COMBINATION WITH SURVEY POINTS AND COLLECTED PREVIOUSLY IN 2020 IN ORDER TO GENERATE THE PRE-CROSSING SURFACE SHOWN IN PLAN. DUE TO NATURAL EROSIONAL STREAM PROCESSES THAT OCCUR OVER TIME, MINOR ADJUSTMENTS TO THE PROFILE ALIGNMENTS MAY HAVE BEEN REQUIRED IN ORDER TO GENERATE A CLEAN PRE-CROSSING SURFACE. - 4. ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM. - 5. POST-CROSSING SURVEY INFORMATION SHOWN IN RED. - 6. POST-CROSSING SURVEY POINTS FOR CROSS SECTIONS AND THALWEG ARE PROJECTED ONTO PRE-CROSSING SECTION AND PROFILE VIEWS FOR COMPARISON. # S-EF41 BASELINE CROSS-SECTION A DISTANCE ALONG CROSS-SECTION (FT) ## S-EF41 BASELINE CROSS-SECTION B DISTANCE ALONG CROSS-SECTION (FT) CROSS SECTION LEGEND — EXISTING GRADE NOTE: ALL SECTION VIEWS SHOWN LEFT TO RIGHT FACING DOWNSTREAM. PRE-CROSSING PHOTOS PHOTO TAKEN LOOKING DOWNSTREAM FROM UPSTREAM IMPACT LIMITS PHOTO TAKEN LOOKING UPSTREAM FROM DOWNSTREAM IMPACT LIMITS POST-CROSSING PHOTOS PENDING CROSSING PHOTO TAKEN LOOKING DOWNSTREAM UPSTREAM FROM IMPACT LIMITS PENDING CROSSING PHOTO TAKEN LOOKING UPSTREAM FROM UPSTREAM IMPACT LIMITS PRE-CROSSING Checked Approved Scale: SEPT. 2021 Date: 21-0244-005 Project No. Drawing No